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Abstract
We study the phase behavior of systems of particles interacting through pair potentials with a
hard core plus a soft repulsive component. We consider several different forms of soft
repulsion, including a square shoulder, a linear ramp and a quasi-exponential tail. The common
feature of these potentials is the presence of two repulsive length scales, which may be the
origin of unusual phase behaviors such as polyamorphism both in the equilibrium liquid phase
and in the glassy state, water-like anomalies in the liquid state and anomalous melting at very
high pressures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phase behavior of substances rapidly becomes more
variegated as the number of species involved increases
and the nature of intermolecular interactions becomes more
complicated. However, somewhat surprisingly, even one-
component substances characterized by isotropic interactions
may show a phase behavior far more complex than that
characterizing the more typical simple, i.e. argon-like, fluids.
In particular, unusual phase phenomena may be exhibited
by spherically symmetric interactions with a softened core.
Introducing a finite repulsive component into the interparticle
pair potential (which already has a harsh short-range repulsion
that accounts for excluded-volume effects) is an idea that dates
back to Hemmer and Stell [1, 2]. They considered potentials in
which the hard core is softened by adding a square shoulder or

a linear ramp, and focused their investigation on the possible
occurrence of multiple critical points and isostructural solid–
solid transitions. A few years later, Young and Alder [3]
showed that the hard core plus square shoulder potential
yields a fluid–solid coexistence line with a maximum melting
temperature, similar to that observed in Cs or Ce. Later
on, Debenedetti et al [4] showed that systems of particles
interacting via potentials whose repulsive component presents
a downward concavity are capable of losing stability upon
supercooling, and of contracting when heated isobarically
(giving rise to the so-called density anomaly). Following these
pioneering works and during the last decade, potentials with
a softened core have been thoroughly investigated for their
importance as simplified models for a number of substances
such as water, metallic systems and colloidal suspensions and,
in general, for their ability to show, within a context that is
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relatively easy to study, a wide spectrum of unusual phase
phenomena, such as re-entrant melting, liquid–liquid phase
transition (LLPT) and water-like anomalies (density, diffusion
and structural anomalies) [5–47].

In this paper we review the phase behavior of five softened
core interactions: (i) a hard core plus a square shoulder,
(ii) a hard core plus a linear ramp, (iii) a hard core plus a
combination of a square shoulder and a square well (SSSW),
(iv) a hard core plus a combination of repulsive and attractive
ramps (the Jagla potential) and (v) the exp-6 potential. For the
shoulder and SSSW potentials the forces are delta functions
of the distance, for the ramp potentials, the strength of the
repulsive force is constant over an interval of interparticle
distances r , while for the exp-6 potential, for a range of
r values, the repulsive force decreases as the distance gets
smaller. This peculiar repulsion enables us to identify two
length scales: a larger one, associated with the external finite
repulsion (effective at lower pressures and temperatures), and
a smaller one, related to the particle hard core (dominant at
higher pressures and temperatures). It follows that in those
thermodynamic regimes where the two length scales are both
partially effective and thus are competing with each other, a
system of particles interacting through such potentials behaves,
in many respects, as though it were a mixture of two species
of different sizes. This may explain the origin of several
interesting phase behaviors.

This paper is organized as follows. In section 2 we review
the properties of the square shoulder, SSSW, ramp and Jagla
potentials in terms of their ability to reproduce the water-like
anomalies, glass transition and the LLPT. A special emphasis
is given to the effects of the attractive part of the potential. In
section 3 we review the occurrence of re-entrant melting and
related anomalous behavior for the exp-6 interaction model.

2. Liquid anomalies, polyamorphism and LLPT

2.1. Soft core potentials

Soft core potentials have a long history of being used to model
isostructural critical points in crystals [1–3], polymorphism of
crystal phases [13, 15, 40, 41], LLPTs [4, 10, 15, 16, 20, 23, 25,
42], polyamorphism in glasses [17, 28, 30, 33, 37] and
anomalous thermal expansion of liquids at low tempera-
tures [4, 7–12, 15, 28, 29, 31, 32, 35, 39, 43]. All these phe-
nomena can be associated with the existence of two competing
local structures: an expanded structure characterized by large
open spaces between particles, and a collapsed structure in
which particles are spaced more closely. The expanded struc-
ture is the result of quantum mechanical interactions between
particles, interactions that differ depending upon the material.
For example, in water the expanded structure is caused by
four-coordinated hydrogen bonds that build a first coordination
sphere of only four molecules [23, 36, 48–56], while in simple
liquids, such as argon, the first coordination sphere consists
of approximately twelve particles arranged in a closely packed
configuration. Accordingly, water has much more empty space
between molecules than argon and its density can be signifi-
cantly increased by increasing the pressure which distorts the

hydrogen bond structure and increases the number of particles
in the first coordination sphere [8]. This distortion is associated
with an increase in entropy and hence with a density anomaly
due to the Maxwell relation

αP = 1

V

(
∂V

∂T

)
P

= − 1

V

(
∂S

∂ P

)
T

< 0, (1)

where αP is the thermal expansion coefficient. The increase
in entropy due to an increase in pressure can also, under
certain conditions, be associated with an anomalous increase
of diffusivity. This can be seen from the Adam–Gibbs
relation [12, 57]

D ∼ exp(−A/T Sconf), (2)

where A is a positive activation energy and Sconf is the
configurational entropy—if we assume that the behavior of
configurational entropy with pressure is similar to the behavior
of total entropy. The local order parameters [58, 59] are related
to entropy and to excess entropy, Sex. Therefore various order
parameters, density and diffusivity usually form a ‘cascade
of anomalies’ on the P–T plane, such that the region of
anomalous behavior of one parameter encloses the region of
anomalous behavior of another. The location of these lines can
be approximately determined by the equation

(
∂Sex

∂ ln ρ

)
T

= ckB, (3)

in which different values of c correspond to different
parameters [60, 61]. Soft core potentials often reproduce this
cascade of anomalies [29, 31, 60].

The collapse of the open structure under pressure
leads at low temperatures to two distinct glassy states
(polyamorphism): low density amorphous solid (LDA) and
high density amorphous solid (HDA), which transform into
one another by pressurizing and depressurizing. This
transformation between two glassy states is associated with
hysteresis [17, 37, 62].

The interplay between two local structures at intermediate
temperatures above the glass transition may lead under certain
conditions to their spatial segregation and hence to an LLPT,
the existence of which is hypothesized in water based on
computer simulations [63] and the extrapolation of the heat
capacity [64]. A direct observation of the LLPT has been
made in yttrium aluminum garnet (Y3Al5O12) [65, 66]. The
LLPT associated with the transformation from molecular
to polymeric liquid has been theoretically predicted [67]
and experimentally observed in liquid phosphorus [68, 69].
Polyamorphism recently has been observed in cerium-based
metallic glasses (Ce55Al45) [70] in which the transition is
caused by pressure-induced f-electron delocalization. There
is a growing body of evidence, both experimental and
computational, that LLPTs and polyamorphic glasses may
exist at high temperatures and pressures in group IV elements:
silicon [71–73] and germanium [74–76], certain molecular
compounds such as silica (SiO2) [77–79] and ionic salts such
as BeF2 [80]. All these substances have tetrahedral local
symmetry. There is indirect experimental evidence for an
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Figure 1. A typical soft core potential U(r) (solid line) with two
repulsive scales: hard core a and soft core b. If the maximal range of
potential c � 2a, the one-dimensional model has an exact solution
which displays a first-order phase transition at P = Pc, T → 0
where the average interparticle distance (one-dimensional volume)
discontinuously changes from x = x1 for P > Pc to x = x2 for
P < Pc, where Pc, x1 and x2 can be found by the Maxwell
construction (dashed inclined line). The one-dimensional model has
a region of density anomaly near T = 0, P = Pc.

LLPT in sulfur [81–83], selenium [84] and some molecular
liquids [66, 85, 86]. Ab initio computer simulations suggest
that LLPTs may exist in hydrogen [87–89] and nitrogen [90] at
high pressures and temperatures. Since the direct experimental
observation of LLPT is often difficult, its existence can
be hypothesized based on observation of other experimental
features of the system which are usually associated with
LLPT, e.g. the melting line maximum, the presence of rich
crystal polymorphism [8], the presence of density or diffusivity
anomalies, or an increase in heat capacity or compressibility
when cooled.

All of these examples show that liquid anomalies and
polyamorphism, although caused in different materials by
different chemistries, have similar physics: namely all
these substances have large open spaces between particles
that collapse under pressure. Thus we need a simple,
universal model that can determine whether these features and
phenomena are related or exist independently. The simplest
model that satisfies these conditions is a spherically symmetric
potential (figure 1) that has two distinct length scales: a soft
core b, which creates a low density structure at low pressure,
and a smaller hard core a, which creates a high density
structure. In principle, the hard core diameter a can be zero
(like in a Gaussian potential studied in [9]). These simple
models typically possess a rich crystalline polymorphism
and, under certain conditions, exhibit liquid anomalies and
polyamorphism. Here we will review recent studies showing
how the various properties of a potential determine a system’s
propensity to have liquid anomalies and polyamorphism in
glassy or liquid phases and whether these phenomena can exist
independently of each other.

2.2. One-dimensional solution

Although soft core potentials are simple, the exact analytical
solution for them exists only in a one-dimensional case
provided the maximal range of the potential, c (U(r) =
0 for any r > c), obeys the condition c < 2a
(figure 1), which restricts the interactions to nearest neighbors.
Under these conditions, the partition function can be
factorized, and there exists a Takahashi solution for the Gibbs
potential [7, 10, 11, 28]:

G(P, T ) = −kBT N ln
∫ ∞

0
exp

[−(U(x) + Px)

kBT

]
dx . (4)

Therefore, the equation of state is

v = 〈x〉 =
∫ ∞

0
x p(x) dx, (5)

where v is the volume per particle, which in one dimension
is equal to the average interparticle distance, and p(x) is the
probability that two neighbors will be separated by a distance
x , which is given by the normalized Boltzmann factor

p(x) = exp

[
−U(x) + Px

kBT

]/ ∫ ∞

0
exp

[
−U(x) + Px

kBT

]
dx .

(6)
It is straightforward to show that, for P = −U ′(x)|x=v , such
that U ′′(x) > 0:

lim
T →0

(
∂v

∂T

)
P

= − kBU ′′′(x)

2[U ′′(x)]2
. (7)

Thus the sufficient condition for the density anomaly is
U ′(x) < 0, U ′′(x) > 0, U ′′′(x) > 0.

Since at T = 0 the Gibbs potential coincides with
enthalpy H (v) = U(v)+ Pv, a sufficient condition for a phase
transition at T = 0, P = Pc is the existence of two points
x1 < x2 that satisfy a Maxwell construction on the potential
energy graph (figure 1), such that U ′(x1) = U ′(x2) = −Pc,
U(x2)−U(x1) = −Pc(x2 − x1) and, for any x between x1 and
x2, U(x) � U(x1)− Pc(x − x1). For a discontinuous potential,
x1 and x2 are the values of the discontinuity of the potential
(figure 2(a)) or its first derivative (figure 3(a)). Obviously, a
potential with a linear ramp between x1 and x2 or a potential
with a square shoulder satisfies these conditions. Note that
x1 = limT →0 v|P>Pc gives the volume of the high density
phase, while x2 = limT →0 v|P<Pc is the volume of the low
density phase. If there are several ramps or several shoulders
in the potential, each of them produces an additional phase
transition at T = 0. It can be shown that

vc ≡ lim
T →0

v(Pc) = p1x1 + p2x2, (8)

where p1 > 0 and p2 > 0 (p1 + p2 = 1) gives the
probabilities of x1 and x2, which can be computed from p(x)

using the Laplace method for T → 0. Thus x1 < vc < x2

and hence, for P slightly less than Pc and T slightly above
zero, v must increase upon cooling, going from v = vc + ε at
T = δT > 0 to v = x2 at T = 0. Thus in one dimension
the region of the density anomaly must necessarily exist if the
phase transition exists at T = 0. But the density anomaly can
exist in the absence of the phase transition.
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Figure 2. (a) A discontinuous square shoulder potential U(r) (solid line) with two repulsive scales: hard core a and soft core b. If the
maximal range of potential b � 2a, the one-dimensional model has an exact solution which displays a first-order phase transition at
P = Pc = UR/(b − a), T → 0, where the average interparticle distance (one-dimensional volume) discontinuously changes from x = a for
P > Pc to x = b for P < Pc. Pc can be found by the Maxwell construction (dashed inclined line). The one-dimensional model has a region
of density anomaly near T = 0, P = Pc. (b) P–T phase diagram of the shoulder potential for b = 1.5a in three dimensions. Thin lines are
isochores for 21 different densities between ρ = 0.593a and 0.292, corresponding to the system of N = 2000 particles in the cubic box with
the edge L = 15.0a, L = 15.2a · · · L = 19.0a. The isochores are interrupted at low temperatures either by spontaneous crystallization into a
face-centered cubic (fcc) crystal (	
) or due to insufficient equilibration time as the system approaches glass transition. The fcc crystal melts at
much higher temperatures, displaying the melting temperature maximum indicated by the ‘×’ symbols. The three-dimensional model lacks
liquid–liquid phase transition, and density and diffusivity anomaly. It displays the anomalous increase of isothermal compressibility upon
cooling for the pressures above the thick dashed line which indicates compressibility minima and maxima as a function of temperature at
constant pressure.

2.3. Simulations in three and two dimensions

Exact solutions do not exist in two and three dimensions, and
Monte Carlo (MC) or molecular dynamics (MD) simulations
are the only reliable methods of obtaining the equation of
state. But, at low temperatures, systems in two and three
dimensions crystallize or become non-ergodic due to the glass
transition, and thus we cannot obtain an equilibrium liquid
equation of state. Therefore, the class of potentials for which
the LLPT can be directly observed between two stable or
metastable liquid states is actually rather narrow. In some
cases one can argue that the position of the liquid–liquid
critical point (LLCP) can be obtained by extrapolating the
equation of state from the region that allows equilibrium
measurements [12, 28], but here we will report only the
features that can be clearly identified through MC or MD
simulations. Two-dimensional simulations have their own
specifics related to the quasi-continuous nature of liquid–solid
transitions in two dimensions [43]. Two-dimensional studies
are addressed in [10, 12, 13, 16, 17, 23, 40, 41, 43].

Two types of soft core potential have been investigated:
(i) potentials with an attractive part characterized by the
existence of a range of interparticle distances r in which
U(r) < 0 [10, 16, 20, 37] (figures 4(a) and 5(a)) and (ii)
purely repulsive potentials for which U(r) � 0 for any
r [13, 15, 28, 29, 31, 39–41, 47] (figures 2(a) and 3(a)).

2.4. Purely repulsive soft core potentials

Among the purely repulsive soft core potentials that have
been studied are (i) the Gaussian potential [9], which has

both density and diffusivity anomalies as well as a re-entering
melting line, (ii) the square shoulder potential [3] (figure 2)
and (iii) the ramp potential [13, 15], which has a linear ramp
between its hard core a and soft core b (figure 3).

We have seen no first-order phase transition between two
amorphous phases in the purely repulsive potential, although
a density anomaly and other anomalies such as the increase
of isothermal compressibility κT and isobaric heat capacity
CP upon cooling, and diffusivity upon compression are often
observable [15, 39].

The ramp potential exhibits density, diffusion and
structural anomalies in the wide range of λ = a/b [29, 31],
rich crystal polymorphism [13, 15] (figure 3(b)) and probably
polyamorphism [17, 28]. There is a hysteretic transition
between high density glass and low density glass at low
temperatures [17]. These glasses are characterized by distinct
static structure factors that determine the behavior of the
non-ergodicity parameters of the mode-coupling theory [28].
Similar continuous potentials with long repulsive tails have
been studied by Camp [40, 41] in two dimensions, who
observe rich crystal polymorphism, density and diffusion
anomaly, as well as rich polyamorphism with gradual
transformation between amorphous structure characterized by
different degrees of clustering, but no evidence of the LLPT, or
sharp first-order-like transformations between different types
of glasses.

The parameters of the ramp can be adjusted in such
a way that its phase diagram quantitatively resembles the
phase diagrams of TIP5P water [36]. The crucial point in
the identification is to assume that the radius of the first
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Figure 3. (a) A ramp potential U(r) (solid line) with two repulsive scales: hard core a and soft core b, introduced by Jagla [13, 15]. If the
maximal range of potential b � 2a, the one-dimensional model has an exact solution which displays a first-order phase transition at
P = Pc = UR/(b − a), T → 0, where the average interparticle distance discontinuously changes from x = a for P > Pc to x = b for
P < Pc. Pc can be found by the Maxwell construction (dashed inclined line). The one-dimensional model has a region of density anomaly
near T = 0, P = Pc. (b) P–T phase diagram of the ramp potential for b = 1.72a in three dimensions [28]. Thin lines are isochores for 17
different densities between ρ = 0.377a−3 and 0.223a−3, corresponding to the system of N = 1728 particles in the cubic box with the edge
L = 16.6a, L = 16.8a · · · L = 19.8a. Two additional isochores correspond to densities ρ = 0.242a−3 and 0.240a−3 for which the density
minimum is observed. The isochores are interrupted at low temperatures either by spontaneous crystallization or due to insufficient
equilibration time as the system approaches the glass transition. The system crystallizes into several polymorphs including fcc, hexagonal
close packed (hcp) and rhombohedral (rh). Some crystal structures are too disordered to be unambiguously identified from computer
simulations, but most probably they are mixtures of fcc and hcp with many stacking faults. The equilibrium melting line (×) of the fcc crystal
displays a clear maximum. The model displays a density anomaly bounded by the temperature of maximum/minimum density (TMD) line
(bold). It is crossed by the compressibility maximum/minimum line (KT M) line (dashed line). The region of density anomaly is enclosed by
the region of diffusivity anomaly, bounded by the diffusivity minimum/maximum (DM) line (dash–dotted line) The three-dimensional model
lacks liquid–liquid phase transition in the region of the PT phase diagram accessible in simulations: however, some isochores cross upon
extrapolation (dotted lines) at low temperatures, suggesting the possible existence of the fluid–fluid critical point. We can observe also a high
density branch of compressibility maxima, which may indicate the presence of the Widom line emanating from the critical point. This line
must join the compressibility minima line at high temperatures. The heat capacity increases upon cooling in the entire displayed region of the
phase diagram.

coordination shell in water coincides with the hard core
diameter of the potential, while the radius of the second
coordination shell coincides with the soft core diameter of
the potential. The first coordination shell in water effectively
corresponds to two water molecules: a central molecule
and four quarters of its nearest neighbors. This structural
unit, expressed by the chemical formula O(HO1/4)4, provides
the building blocks for a hexagonal ice crystal, which is a
hexagonal close packed (hcp) lattice assembled from such
units. Of note is that ramp models crystallize at low
pressures either into an hcp or a face-centered cubic (fcc)
crystal whose density is lower than the density of liquid, in
complete agreement with the behavior of water in which the
density of ice is lower than the density of liquid (figure 3(b)).
Accordingly, two water molecules correspond to one ramp
particle and the number density of water is two times larger
than the corresponding number density of the ramp model.
The pairs of particles that are at the hard core distance in
the ramp model correspond to the water molecules with five
nearest neighbors, i.e. when a molecule from the second
coordination shell enters the first coordination shell [8, 55, 56].
This fifth neighbor leads to the hydrogen bond bifurcation
associated with an increase of potential energy equivalent to
the energy of the repulsive ramp. The diffusivity of water
is related to the hydrogen bond exchange between diffusing
molecules. Therefore it is proportional to the number of

bifurcated hydrogen bonds, and hence to the number of five-
coordinated molecules that increase with pressure. Therefore
the diffusivity of water increases with pressure. The same is
true of the diffusivity of the ramp model within a certain range
of densities. Indeed, at the density corresponding to the density
of closely packed soft cores, the diffusivity will take place only
if the particles can climb up the repulsive ramp. Therefore
the diffusivity is proportional to the number of particles with
a nearest neighbor inside the repulsive ramp. Obviously the
number of such particles increases with pressure as figure 6
suggests for a similar model.

In general, a particle in a soft core model may be regarded
as a coarse-grained representation of the structural chemistry of
a real liquid with anomalous behavior. It is not surprising that
such macroscopic collective phenomena as phase transitions
arise on scales exceeding an atomic diameter. At such scales
the specific chemical nature of interatomic interactions is
washed away, and the behavior of the system can be adequately
quantified by studying the interaction of larger structural
units using an appropriately parameterized binary spherically
symmetric potential. Obviously a soft core potential cannot
predict the electronic properties of a system because that
level of detail is deliberately excluded from the model. It is
still remarkable that the soft core potential can mimic many
properties of real substances if the correct parameters are used.

The fact that the potential parameters must be selected
with care is illustrated by the square shoulder potential

5
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Figure 4. A square shoulder square well potential (SSSW) [26]. (a) U(r) (solid line) with two repulsive scales: hard core a and soft core b
and a square well of diameter c. The height of the shoulder is UR and the depth of the well is UA. If the maximal range of potential c � 2a,
the one-dimensional model has an exact solution which displays a first-order phase transition at P = Pc = (UR + UA)/(b − a), T → 0,
where the average interparticle distance (one-dimensional volume) discontinuously changes from x = a for P > Pc to x = b for P < Pc. Pc

can be found by the Maxwell construction (dashed inclined line). The one-dimensional model has a region of density anomaly near T = 0,
P = Pc. (b) P–T phase diagram of the shoulder potential for b = 1.5a, c = 2a, UR = 2UA in three dimensions. Thin solid lines are
isochores for 12 different densities between ρ = 0.0492a−3 and 0.297a−3, corresponding to the system of N = 850 particles in the cubic box
with the edge L = 12.0a, L = 12.2a . . . L = 14.2a. Dashed lines are additional isochores corresponding to ρ = 0.331a−3, 0.320a−3 and
0.317a−3. Low temperature simulations are hampered by the spontaneous crystallization (indicated by �) into a crystal of complex symmetry
in which particles separated by hard core distance form parallel lines arranged into a two-dimensional triangular lattice. This crystal melts at
much higher temperatures, displaying the melting temperature maximum indicated by ‘×’ symbols. The isochores are interrupted at low
temperatures due to increasing relaxation times. The three-dimensional model displays a liquid–liquid phase transition ending at the critical
point T = 0.52UA/kB, P = 1.05UA/a3 but no density or diffusivity anomaly. It displays the anomalous increase of isothermal
compressibility upon cooling for pressures above the thick dashed line, which indicates compressibility minima and maxima as a function of
temperature at constant pressure. Above the liquid–liquid critical point we observe a second line of compressibility maxima, which must join
with the compressibility minima line at high temperatures. We also observe a line of the isobaric heat capacity maxima (bold solid line),
which in the vicinity of the critical point asymptotically coincides with the line of compressibility maxima, forming a Widom line.

which does not have a density anomaly (figure 2(b)) but it
does exhibit rich crystal polymorphism [47] and probably
polyamorphism. Various smoothening procedures can be
applied to the square shoulder to create a ‘family’ of potentials
interpolating between ramp and shoulder [38, 47] which
resemble the potential of figure 1. As the ramp potential
becomes more and more shoulder-like, the region of density
anomaly shrinks until it disappears below the homogeneous
nucleation line of the crystalline phase or below the glass
transition line.

The extrapolation of the isochores for some purely
repulsive soft core potentials below the glass transition
or below the crystallization line suggests that some of
the isochores might cross at low temperatures that are
unachievable in equilibrium simulations (figure 3(b)) [28],
indicating the possible existence of the fluid–fluid critical point
below the glass transition temperature. However, this critical
point does not materialize and the isothermal compressibility
and specific heat remain finite on the entire PT plane.

2.5. Shoulder potential with an attractive square well

Adding the attractive part to the potential (figures 4 and 5)
causes a negative van der Waals correction −aρ2 to be added to
the equation of state [15]. Thus a high density isochore will be
shifted down by a larger value than a low density isochore and
therefore shifted isochores may cross at higher temperatures
achievable in simulations. Indeed there are soft core potentials

with an attractive part that clearly exhibit two first-order
phase transitions, one a gas–liquid transition that ends at a
regular gas–liquid critical point, and the other a liquid–liquid
transition between two liquids of different densities which
ends in an LLCP [16, 20] (figures 4(b) and 5(b)). Systems
with three or more fluid–fluid critical points have also been
observed [25, 45]. For soft core potentials with an attractive
part there is a wide range of parameters for which the LLCP
exists.

Discontinuous square shoulder potentials with an attrac-
tive square well (SSSW potentials) have a clear LLCP in
three dimensions (figure 4) and exhibit a rich crystal polymor-
phism [20, 21, 26]. The dependence of the critical temperature,
pressure and density on the potential parameters is described
in [26]. In all of these cases the LLCP is metastable with re-
spect to freezing and, although no density anomaly is observed,
a compressibility maximum and a heat capacity maximum are
observed along the extension of the LLPT line into a supercrit-
ical region known as the Widom line [30]. The Widom line
is defined as the temperature at which the correlation length
achieves its maximum at constant pressure. Alternatively, it
can be defined as the pressure at which the correlation length
reaches its maximum at constant temperature. These two lines
differ far from the critical point, but asymptotically coincide
near the critical point where the correlation length diverges. In
the vicinity of the critical point, such thermodynamic response
functions as compressibility κT and heat capacity CP can be
expressed in terms of correlation length. Thus the lines of κT

and CP maxima asymptotically coincide with the Widom line.
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(b)

Figure 5. (a) The Jagla potential U(r) (solid line) with an attractive ramp [16]. The potential has two repulsive scales: hard core a and soft
core b and an attractive ramp of diameter c. The height of the repulsive ramp is UR and the depth of the attractive ramp is UA. If the maximal
range of potential c � 2a, the one-dimensional model has an exact solution which displays a first-order phase transition at
P = Pc = (UR + UA)/(b − a), T → 0, where the average interparticle distance (one-dimensional volume) discontinuously changes from
x = a for P > Pc to x = b for P < Pc. Pc can be found by the Maxwell construction (dashed inclined line). The one-dimensional model has
a region of density anomaly near T = 0, P = Pc. (b) P–T phase diagram of the Jagla potential for b = 1.72a, c = 3a, UR = 3.56UA in three
dimensions [37]. It shows a positively sloped liquid–liquid phase transition line ending at the critical point Pc = 0.243UA/a3,
Tc = 0.373UA/kB, which is located above the equilibrium melting line. Below the critical point is the region of density anomaly, crossed by
the line of compressibility maxima/minima which meets the low density liquid spinodal at its minimum. An upper branch of the
compressibility maxima, joins the line of heat capacity maxima near the critical point, forming an extension of the coexistence line into the
supercritical region (Widom line). The LDL can be studied above the coexistence line, because the HDL phase nucleates only near the LDL
spinodal. One can see also the two distinct glass transition lines below which the LDL and HDL transform into respectively LDA and HDA.
The region of density anomaly is bounded at low temperatures by the temperature of density minimum, which can be observed in the
equilibrium at low pressures but at high pressures it coincides with the glass transition. We perform the differential scanning calorimetry
simulations along constant pressure paths α (above Pc) and β (below Pc).

In two dimensions, SSSW potentials may also have a
metastable LLCP at some values of the parameters [10, 12, 23],
but this question needs further investigation. On the other hand,
these potentials have a density anomaly in two dimensions.
This density anomaly is associated with freezing into low
density, triangular crystals [23] and may be caused by a quasi-
continuous nature of the freezing transition in two dimensions:
namely by a gradual increase of the characteristic size of
the low density crystal-like patches as the melting line is
approached [43]. In this example, the density anomaly can
be interpreted as resulting from crystal polymorphism, since
the patches of local structures resembling a high density
square crystal and low density triangular crystal can be clearly
identified in the liquid state in the region of the density
anomaly [23]. In three dimensions, the solid–liquid transition
is sharp and the correlation length remains finite, so no density
anomaly is observed. One can expect that square shoulder
potentials with an attractive square well could also have distinct
glassy states corresponding to different liquid states.

2.6. The Jagla model

The Jagla model is a combination of a repulsive ramp with
an attractive ramp (figure 5(a)). The Jagla model has density
anomalies and a stable LLPT separating low density liquid
(LDL) and high density liquid (HDL) both in two and three
dimensions [15, 16]. LDL and HDL have two distinct

glassy states: LDA and HDA (figure 5(b)) [17, 30, 33, 37],
which are characterized by two different glass transition (GT)
temperatures Tg. Various families of continuous potentials can
cover the intermediate scenarios between the Jagla potential
and the SSSW potential [38, 39]. The existence of the
LLCP and its position—as well as the existence of the
density anomaly—strongly depends on the minute features
of the potentials. Note that the spherically symmetric
potential computed as the inversion of the oxygen–oxygen pair
correlation function for water [5, 6], although very similar to
the Jagla potential, lacks an LLCP and a density anomaly.

Although the Jagla models are the simplest models of
water, they capture most of the anomalous features of the
behavior of water including the increase of solubility of small
non-polar compounds upon cooling and even cold denaturation
of proteins [34]. The only significant difference between the
phase diagrams of these models and the hypothetical phase
diagram of supercooled water is that Jagla models usually
have a positively sloped LLPT coexistence line [16, 30, 42]
(figure 5(b)), so that their critical points lie above the region
of the density anomaly, while the phase diagrams of classical
water models based on Coulomb interactions have a negatively
sloped coexistence line, and their LLCP is surrounded by the
region of the density anomaly [91, 92]. The reason for this
discrepancy is that, in the Jagla model, the HDL has lower
entropy than LDL, and hence due to the Clapeyron relation a
positively sloped coexistence line.
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Figure 6. Illustration of the structural difference of the LDA solid
and HDA solid by the radial distribution function g(r) for the Jagla
model. The LDA solid is obtained upon cooling LDL along path β
(P = 0.225UA/a3). The HDA solid is obtained upon cooling HDL
along path α (P = 0.275UA/a3). Note that, for HDA, particles shift
from the soft core distance r/a = 1.72 to the hard core distance
r/a = 1.0, so the peak at r/a = 1.72 decreases while the peak at
r/a = 1.0 increases. Similar graphs characterize the behavior of a
generic soft core potential with pressure. As pressure increases, some
particles shift from the soft core distance to the hard core distance.

HDL and LDL can be simulated simultaneously at any
state point in the region between the two spinodals; hence the
difference between their entropies can be explicitly computed
by thermodynamic integration around the LLCP. Moreover we
can study the glass transition of both LDL and HDL along the
same constant pressure path β which goes below the minimum
on the LDL spinodal (figure 5(b)). Figure 7 shows the entropies
of LDL, HDL, LDA, HDA and the hcp crystal, into which
LDL spontaneously crystallizes if one runs long equilibrium
simulations slightly above the glass transition temperature. In
fact, the entropy of HDL is so low that the entropy of its glass
HDA becomes smaller than the entropy of the low density
polymorph which has an hcp structure and a smaller density
than LDL. This would be a demonstration of the Kauzmann
paradox [93] if the HDL could crystallize into this type of
crystal. In reality, HDL in the Jagla model must crystallize
into a different type of crystal (presumably rhombohedral) with
much higher density and much lower entropy. The entropy
of this crystal would always remain lower than the entropy of
HDA.

2.7. Density minimum

A model that claims to display water-like characteristics must
be able to exhibit a temperature of maximum density. This
ability is a striking feature of the Jagla models and the ramp
models. What is remarkable is that these models display an
even rarer density minimum [28, 37].

This feature has been seen before only in supercooled
Te, stable As2Te3 [94], some GeTe alloys [95], at
the upper limit of experiments for BeF2 [80], and in

Figure 7. The dependence of the total entropy without the kinetic
contribution, 3/2kB ln T , on temperature at constant pressure
P = 0.22UA/a3 < Pc for the hcp crystal and both types of
amorphous states, HDL/HDA and LDL/LDA in the Jagla model. The
difference between the entropies of HDL and LDL,
SL DL − SH DL = 1.32kB at T = 0.32, is computed by thermodynamic
integration around the critical point. The entropy difference between
LDL and hcp is 
S = 
H/Tm = 2.1kB, where 
H = 0.73UA is
the enthalpy of fusion and Tm = 0.345UA/kB is the equilibrium
melting temperature of the hcp crystal into LDL at P = 0.22UA/a3.
The entropy undetermined constant is the same for hcp, LDL and
HDL. The difference between the entropies measured upon cooling
and heating is caused by the ergodicity break at the glass transition.
In all cases the heating/cooling rate is q2 = 2 × 10−5

√
U 3

A/ma2k2
B.

the simulations of water [91, 92]. Very recently, the
density minimum was observed in laboratory water in
very low temperature measurements using noncrystallizing
nanoconfined water [96, 97] and in silica [98].

In the Jagla model, the density maximum is always
an equilibrium property, but the density minimum is only
seen in the equilibrated liquid at the lowest pressures of
the existence of the density anomaly at which the density
minimum merges with the density maximum. At higher
pressures the density minimum is pre-empted by inevitable
crystallization in the ramp model (figure 3(b)) or by the GT
in the Jagla model (figure 8) for sufficiently high cooling rates
at which the crystallization is avoided. For slower cooling rates
the minimum would presumably continue as an equilibrium
phenomenon. There is an apparent density minimum near
GT because the glassy state has a positive thermal expansion
coefficient.

Figure 8 shows how the two extrema, Tmin and Tmax, merge
at low pressures and would also merge at higher pressures
except for the phase change to HDA caused by an intersection
with the LDL spinodal. According to the theorem proved
in [99], the temperature of the density maximum line meets
the LDL spinodal at the point of its minimum on the P–T
plane. Moreover, the slope of both curves at the point of their
intersection must be equal to zero. Figure 5(b) is in complete
agreement with these statements. No density anomaly is
observed above the critical pressure upon crossing the Widom
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Figure 8. Demonstration of the effect of the GT on density minimum
along path β for P < Pc in the Jagla model. For relatively high
pressures below Pc (0.05UA/a3 < P < Pc), the density minima are
located near the GT temperature T ′

g along different paths. For low
pressures P < 0.050UA/a3, the Tmin is located in the ergodic region,
and at P ≈ 0.01 it approaches the temperature of maximum density
Tmax. The Tmax line (open arrows) and the Tmin line (filled arrows)
confine the density anomaly region which disappears near the critical
point and at very low pressure.

line. Therefore, the Tmin and Tmax are not caused by the Widom
line in the Jagla model. The line of κT maxima coincides with
the Widom line near the critical point, but it forms a large
loop in the P–T plane, crosses the Tmax line at the point of
its maximal temperature, and then turns upwards to cross the
Tmax line at its ending point, where they both meet the LDL
spinodal. As mentioned above, this special point is a minimum
of the LDL spinodal and a maximum of the Tmax line. It is also
the common intersection of the LDL spinodal, the Tmax line,
and the compressibility maxima line.

The situation is quite different in the ST2 and TIP5P
models of water [91, 92] in which the LLPT coexistence line
and the Widom line have negative slopes. In this case the
critical point lies in the region of the density anomaly and the
Tmax line enters the HDL region and meets the HDL spinodal
at the point of its maximal pressure. The compressibility
maximum line goes down from the critical point along the
Widom line, crosses the Tmax line at the point of its maximal
temperature, makes a large loop on the P–T plane, encircles
the critical point at high pressures and crosses the Tmax line at
the HDL spinodal maximum. These examples show that the
existence of Tmin and Tmax are always associated with the line
of compressibility maxima that passes through the region of the
density anomaly bounded by these two lines, but the Widom
line does not necessarily lie in this region.

Gibson and Wilding [42] have studied a family of Jagla
potentials by gradually reducing the range of both the repulsive
and attractive ramps. Accordingly, the slope of the coexistence
line decreases but the LLCP shifts to lower temperatures and
eventually disappears below the line of crystal homogeneous
nucleation. At this point, the coexistence line acquires a
slightly negative slope, but this is within the error bars.

We can expect this negatively sloped LLPT coexistence
line to continue into the supercritical region as the Widom
line [30] with a negative slope. Thus we can expect that, in
the case of a negatively sloped coexistence line, the Widom
line will go from a critical pressure to zero pressure as
the temperature increases. The critical density fluctuations
associated with the κT maximum and diverging correlation
length ξ may induce crystallization into a low density solid
whose local structure is similar to that of low density liquid
(LDL). Hence one can expect that, in the case of a negatively
sloped LLPT line, the homogeneous nucleation line coincides
with the Widom line. This is hypothesized to be the case
for water [100]. If the coexistence line has a negative slope,
the entropy of the LDL is lower than the entropy of the high
density liquid (HDL) due to the Clapeyron equation. Thus
the LDL may serve as an Ostwald step on the way to a low
density crystal. Similar features are exhibited by the Molinero
monatomic water model based on the Weber–Stillinger three-
body potential [76].

When the coexistence line is positively sloped, the domain
of LDL can be entered along a constant pressure path below the
LLCP without entering a region of large density fluctuations
(figure 5(b)). In this case, the low density branch of the
line of compressibility maxima also runs through the region
of the density anomaly, crossing the temperature of the
maximum density line at its maximal temperature [99], but
the compressibility remains small and does not diverge as it
does in the vicinity of LLCP. The low density branch of the
compressibility maxima line does not reach the LLCP but may
cross the LLPT coexistence line and join the LDL spinodal
at the point of its minimum, or exit the region of the density
anomaly through the point of the minimal temperature on the
minimal density line. Thus, for the positively sloped LLPT
coexistence line, one can enter the LDL domain below the
critical pressure without crossing the region of high density
fluctuations and hence avoiding crystallization. Another
interpretation of the stability of the LDL in the case of the
positively sloped LLPT coexistence line is that the LDL
is significantly more disordered than HDL and hence it is
separated from the low density crystal by a high entropic
barrier. The HDL is less prone to crystallization because its
density and entropy are still much higher than the density and
the entropy of the high density crystal. Accordingly, in the
case of the positively sloped LLPT coexistence line, the LLPT
is usually stable with respect to crystallization. Therefore, the
Jagla model is the ideal model to study polyamorphism in the
glassy state and polyamorphism in relation to the liquid–liquid
transition. After appropriate parameterization it may also be
applied to the study of metallic glasses [37].

2.8. Differential scanning calorimetry (DSC) of the Jagla
model

Here we discuss in some detail recent studies [37] of the
interplay of the glass transition and the liquid–liquid phase
transition in the Jagla model. Our results are based on discrete
molecular dynamics (DMD) simulations [101] of the Jagla
model [15] defined in figure 5(a). A common experimental
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Figure 9. Demonstration of glass transitions in HDL by comparing the T dependence of CP on cooling and heating in the Jagla model.
(a) Cooling HDL along path α and (b) heating HDA along path α at different pressures P > Pc. Upon cooling, CP shows a maximum at
T = TW and a shoulder at T ′′

g ≈ 0.3UA/kB, below which the liquid vitrifies to HDA. In contrast, upon heating HDA, CP shows a peak at T ′
g ,

characterizing the GT and corresponding to the shoulder found upon cooling in (a). The standard construction denoted by the dashed straight
lines indicates that the GT temperature is Tg ≈ 0.27UA/kB for all the pressures studied. Further heating results in a second peak at the Widom
line, T = TW. While Tg is nearly constant at P > Pc, the Widom line temperature TW shifts to higher values as P increases. Moreover, due to
critical fluctuations as P → Pc, the height of the Widom line peak is much more sensitive to P than that corresponding to the GT. We use a
slow cooling rate of q1, since crystallization is not observed for P > Pc. We also show PV αP , the volumetric contribution to CP . We see a
small peak in αP which occurs at T ′

g and a large peak which occurs at TW. This peak makes a principal contribution to the CP peak at Widom
line. (c) Heating the glass along path α (P > Pc very close to Pc) with different heating rates q1, q2 = 2q1 and q3 = 4q1. As the heating rate
increases, the GT peak at T = T ′

g shifts to higher temperature as expected. In contrast, the Widom line peak does not shift with the heating
rate; instead it becomes wider and less sharp as q increases, but the total area under it does not change. In summary, we demonstrate that the
GT peak is not sensitive to P but is sensitive to heating versus cooling, while the Widom line peak, which is almost entirely due to the
volumetric contribution, is sensitive to P but not to heating versus cooling. In contrast the GT peak is sensitive to the heating rate, while the
Widom peak is not sensitive to the heating rate except in the close vicinity of the LLCP.

technique for studying the GT is DSC, which detects the GT
by a maximum in CP upon heating the glass back to the liquid
state. A maximum in CP also occurs in systems with LLPT.
The corresponding maxima, obtained at different pressures
in the supercritical region, form a line that, as the LLCP is
approached, becomes the Widom line. Some systems, such
as the Jagla model, present both the GT and LLPT. Here we
ask (i) how the GT and LLPT would be detected in DSC
experiments and (ii) if the GT and LLPT are related.

An important parameter of the DSC experiments is the
cooling/heating rate, q . In [37] three heating rates were
studied, q1, q2 = 2q1 and q3 = 4q1, where q1 =
10−5

√
U 3

A/ma2k2
B ≈ 7 × 109 K s−1 if one uses the values a,

UA and particle mass m, to fit the water behavior. This value is
four times smaller than the one used in SPC/E simulations of
water [102].

Cooling the HDL along constant pressure path α at P >

Pc (figure 5(b)) results in the HDA glass. We do not observe
any spontaneous crystallization along path α even at the
slowest cooling rate q1. This path crosses first the line of CP

maximum at TW associated with the Widom line. Figure 9(a)
demonstrates the behavior of CP along such paths for several
pressures. The structural changes from the LDL-like liquid
above TW to the HDL-like liquid below TW are associated with
a rapid decrease of diffusivity, which resembles the behavior of
fragile liquids [30, 33]. Note that the position, height and shape
of the Widom peak strongly depends on pressure. While near
the critical point the peak is very sharp and almost diverging
as expected, at high pressures far away from Pc the peak
becomes very broad and shallow and practically disappears at
P = 0.4UA/a3. Note that at high temperatures T > TW, CP

increases with pressure as the path shifts away from the critical
pressure. A similar effect can be seen for water in which
the heat capacity also decreases as the constant pressure path
approaches the hypothetical critical point value P ≈ 200 MPa
for T > −25 ◦C [103]: the Widom peak becomes broad
enough to be seen at P = 0.1 MPa, but might be very narrow
and might shift to lower temperatures at P = 150 MPa, so that
no heat capacity increase associated with it can be detected.
The only difference is that in water the Widom line presumably
has a negative slope and thus must be detected below Pc.

As the temperature drops further, CP starts to decrease
again due to the loss of ergodicity and forms a characteristic
shoulder at T = T ′′

g < TW, which almost does not
depend on pressure. Near T ′′

g the diffusivity changes its
behavior and starts to follow an Arrhenius law which is a
characteristic of strong liquids. Thus we can relate the fragile
behavior with crossing the Widom line, while we can relate
the strong behavior with the glass transition. As CP reaches
the plateau below GT, the liquid turns into the HDA solid,
whose structure is characterized by the peak of the RDF at the
hard core distance a (figure 6). Each particle in the HDA has
approximately 1.8 neighbors in the first coordination sphere.
In the monatomic solid, CP must reach the Dulong–Petit value
of 3kB. However, due to discontinuity of the potential in
the discrete molecular dynamics, which has a characteristic
step of UA/8, this limiting value is not reached. Variants of
the Jagla model which employ continuous potential [17, 38]
or potentials with smaller steps [28] would eliminate this
problem.

As we heat the HDA back (figure 9(b)), CP produces a
characteristic overshoot at T ′

g ≈ T ′′
g , indicating the restoration
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Figure 10. Demonstration of glass transitions in LDL by comparing the T dependence of CP on cooling and heating in the Jagla model.
(a) Cooling LDL along path β for P = 0.225UA/a3 < Pc. CP increases and shows a maximum at T ′′

g ≈ 0.24; further cooling results in an
LDA glass. Upon heating LDA along path β, a sharp increase in CP occurs as T = Tg and CP displays a maximum at T ′

g ≈ 0.26UA/kB. The
standard construction denoted by the dashed straight lines indicates that, at the present pressure, the GT temperature is Tg ≈ 0.22UA/kB. We
use a fast cooling or heating rate, q2, to avoid crystallization. We also show the behavior of PV αP , the volumetric contribution to the CP . We
see that anomalous behavior (αP < 0) switches to normal behavior (αP > 0) in the vicinity of T ′

g . (b) Heating the LDA along path β
(P < Pc) at different cooling rates. At faster heating rates q = q2 and q3 no crystallization occurs and the behavior of CP near GT is the same
as for P > Pc, i.e. the T ′

g peak shifts to higher temperatures and becomes less pronounced as the heating rate increases. For a low heating rate
q = q1 crystallization into the hcp crystal occurs just above the glass transition at Tg. As a result the peak at T ′

g is almost completely
suppressed by the latent heat release associated with rapid crystallization. Since the enthalpy of the crystal which grows as the temperature
increases is less than the enthalpy of the glass, we see an apparent specific heat minimum at T = 0.25UA/kB. This situation is very similar to
what occurs at the experimental GT in water [107] at low pressures. The hcp crystal melts upon further heating and produces an endothermic
peak in CP at T = Tm = 0.32UA/kB. Note that the ratio of the GT temperature Tg = 0.22UA/kB and the melting temperature Tm is 2/3, thus
mimicking the classical glassformer value 2/3 due to Kauzmann [93].

of ergodicity associated with the glass transition. The position
and the height of this peak is almost independent of pressure.
In contrast, the behavior of the Widom peak is the same
upon heating as upon cooling, provided the heating/cooling
rate is slow (q � q1). This means that the Widom peak
is the equilibrium feature of the liquid phase. The value of
the GT temperature Tg < T ′

g can be found by a standard
construction [104], indicated by the crossing of straight lines
fitting the slope of the peak and the plateau.

Another experimental method of detecting a glass
transition is to measure the thermal expansion coefficient αP

as a function of temperature [105], which must produce a
characteristic overshoot at T ′

g upon heating. Figure 9(b) also
shows PV αP , the volumetric contribution to CP for P =
0.25UA/a3 and P = 0.275UA/a3 (black and red solid lines,
respectively). Indeed, we see a small peak at T ′

g followed by
a large peak at TW. This result suggests another experimental
technique, which clearly distinguishes the Widom line from
the GT. As we cross the Widom line, the volume of liquid must
dramatically change with temperature due to structural changes
in the liquid transforming from the HDL-like to the LDL-like
states. Accordingly αP must produce a large peak. The height
of this peak must diverge near the critical point. In contrast the
GT peak in αP must be small and must not depend on pressure,
because the structural changes associated with GT are minor.
Note that for water, in which the Widom line has a negative

slope, the high temperature phase is HDL-like, thus we would
expect a diverging negative peak in αP near the Widom line,
followed by a small positive peak at T ′

g.
Finally, an important distinction between the Widom

line and the GT is given by the heating rate dependence of
the correspondent peaks (figure 9(c)). As the heating rate
decreases, the glass transition peak becomes more prominent
and shifts to the lower temperatures, which is qualitatively
consistent with experimental results [106]. The Widom line
peak at T = TW in principle should not depend on the heating
rate. However, along P = 0.25UA/a3, which is very close to
Pc, the magnitude of the Widom line peak decreases when the
heating rate is rapid. This is due to the critical slowing down of
dynamics near the LLCP. Nevertheless, the position of the peak
at TW and the total area under it (corresponding to the enthalpy
gain) do not change with the heating rate.

In the Jagla model, the LLPT coexistence line has a
positive slope. Therefore below the critical pressure, path
β crosses the coexistence line, instead of the Widom line.
The coexistence line produces no effect on the behavior of
the LDL which can be supercooled below the coexistence
line without nucleation of the HDL. The particular shape of
the LDL spinodal (which has a minimum) guarantees that,
for P < 0.23UA/a3, the LDL remains metastable in the
entire temperature range and it can undergo a glass transition
without forming HDL provided the heating/cooling rates are
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fast enough (q � q2) so that crystallization does not occur.
Figure 10(a) shows the CP behavior for cooling and heating
along path β . The behavior at GT is qualitatively similar to
that for P > Pc, except that no Widom peak is observed.
The values for Tg, T ′

g and T ′′
g has the same meaning as for

P > Pc but has much smaller values. The diffusivity changes
along path β in a non-Arrhenius way characteristic for fragile
liquids and becomes undetectable in the computer simulations
for T < Tg. The thermal expansion coefficient αP is negative
in the region of density anomaly between the temperature of
minimal density, Tmin ≈ T ′

g, and the temperature of maximum
density, Tmax. For this pressure, Tmin is not the equilibrium
property of liquid, but is associated with the GT, because, as
the majority of solids, the glass must have αP > 0. Upon
heating between Tg and T ′

g, αP develops a small overshoot
followed by a small undershoot, associated with the restoration
of ergodicity upon heating. This result shows that it is not easy
to distinguish the true equilibrium Tmin from the one associated
with GT. Additional calorimetric information must be taken
into account.

Upon heating LDA along path β at P < Pc, the heating
rate has drastic effects on CP (figure 10(b)). In particular,
heating LDA above Tg at a slow rate q = q1 results in
crystallization. At this slow rate, the particles have sufficient
time to form crystal nuclei. Thus the system spontaneously
crystallizes into the hcp crystal, which has a lower free energy
than the metastable liquid. This crystallization is associated
with the release, upon heating, of latent crystallization heat
resulting in an apparent negative peak in CP . Upon further
heating, the crystal finally melts at the melting temperature
Tm = 0.32, indicated by a strong endothermic peak in CP .
Crystallization events are not observed upon heating at faster
rates. The behavior of CP at a slow heating rate (i.e. a GT
peak followed shortly by a crystallization peak and then by
a melting peak) is very similar to that observed in the DSC
experiments of [107], obtained upon heating glassy water at
atmospheric pressure. We note that the peak associated with
the GT observed at q = q1/2 and q = q1/4 is barely
observable at q = q1 due to the onset of crystallization.

2.9. DSC simulations of the ramp model

As we see, the DSC simulations of the Jagla model give
us useful insights on how the LLPT can be observed in the
presence of the GT. The problem here is that the entropy
of the HDL is lower than the entropy of LDL which is the
opposite to the situation in water. Therefore, it is interesting
to investigate the ramp model (figure 3(a)), in which the
LLCP is submerged below the glass transition, but still we
can expect to have two types of glasses, HDA and LDA. In
this model, the region of density anomaly is wider than in the
Jagla model. Hence the entropy increases upon compression
for a wider range of pressures, almost up to the pressure of the
hypothetical LLCP. Therefore we can expect that the entropy
of HDA in this model will be higher than the entropy of LDA.
Accordingly, we can expect that the Widom line emanating
from this hypothetical LLCP will have a negative slope and
might enhance the crystallization rate at low pressures, which

Figure 11. The behavior of CP upon heating and cooling along the
constant pressure paths for the ramp model. Each curve has a single
maximum, the position of which coincides upon heating and cooling,
which means that no Widom line is observed. Note that the peaks are
getting sharper and higher close to the pressure of the hypothetical
critical point and that the GT rapidly shifts to high temperatures as
the pressures decreases from P = 0.6UR/a3 to P = 0.5UR/a3. Thus
we can classify the glasses for P � 0.6UR/a3 as HDA while the
glass for P = 0.5UR/a3 as LDA. However no sharp distinction is
possible. The entropy of LDA glass is smaller than the entropy of the
HDA glasses, which can be seen from a large value of CP in the case
of LDA. Note that the heating of the LDA is associated with
crystallization (an abrupt drop of CP at the end of the heating curve)
even for the fastest heating rate we study.

has indeed been observed in [28]. Moreover, the presence
of this Widom line will result in larger heat capacity peaks
along path β . All this makes the situation in the ramp model
more similar to that in water. Thus it would be instructive to
repeat the DSC simulations for this model, in order to see if the
Widom line could be distinguished from the GT.

Figure 11 shows the behavior of CP along several constant
pressure paths. We can clearly see that along all these paths
there is only one peak in CP , and that the overshoot upon
heating occurs exactly on top of the cooling peak. Hence no
separate Widom peak is observed. This means that no direct
evidence of the LLPT can be obtained, although the magnitude
of the peaks increases as we approach the pressure of the
hypothetical critical point, P ≈ 0.8UA/a3 (see figure 3(b)).
The DSC experiments in the nanoconfined water will show
whether or not water has a Widom peak separated from the
GT peak.

In the ramp model, it is difficult to characterize the
situation as the true polyamorphism, although the structures
of the LDA and HDA obtained at different pressures have
the same qualitative difference as the structures of HDA
and LDA in the Jagla model (figure 6), in which the
polyamorphism is true and the glass transitions in HDA and
LDA can be studied at the same pressure (figure 7) resulting
in the different GT temperatures and different behavior of
the diffusivity [33, 37]. In the ramp model, the HDA
glass recovered at lower pressure gradually transforms into
the LDA before the glass transition. The compression–
decompression simulations of the ramp model performed at
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very low temperatures result in the hysteretic PV curve with
a portion of high compressibility but no true instability [17].
In contrast, the low density hcp crystal collapses into HDA, in
an abrupt transition as in water experiments [62]. Moreover,
in the Jagla model, where the true polyamorphism exists,
the LDA collapses into HDA in an abrupt transition similar
to the hcp collapse, and HDA explodes into LDA, almost
in the same way as HDL and LDL interconvert at their
spinodals [33]. In summary, we can expect, that in experiments
there will be an entire spectrum of situations with different
degrees of polyamorphism, starting from a sharp first-order-
like transition as between HDA and LDA water and ending in a
gradual transition such as between HDA and very high density
amorphous ice (VHDA) [108, 109].

3. Anomalous melting behavior

In a typical simple fluid, the fluid–solid coexistence line
runs monotonically to higher temperatures when the pressure
is increased. An example of this behavior is provided by
a system of particles interacting through the Lennard-Jones
potential, which is the most successful model for simple,
argon-like, fluids. At low pressures most substances exhibit
a similar fluid–solid coexistence line. At higher pressures a
number of elements undergo a radical change: the melting
line passes through a maximum and enters a region of re-
entrant melting, i.e. a region where melting occurs when
the pressure is increased and the temperature kept constant.
If the pressure is further increased, the melting line may
recover a positive slope (e.g. Cs, Rb, Na, Ba, Te, etc) [110].
As advances in experimental methods make it possible to
reach higher pressures, it has been found that an increasing
number of substances show a non-monotonic melting line.
Such melting behavior is often called ‘anomalous’ to point
out that it differs from the monotonic standard (i.e. similar
to the Lennard-Jones fluid) behavior. Re-entrant melting is
relevant also in a completely different context, i.e. for soft
matter. Pair interactions with a soft repulsive component, used
for modeling such systems as star polymers, microgels and
colloidal suspensions [111], have been shown to exhibit re-
entrant melting behavior, often in association with water-like
anomalies [112]. The occurrence of similarities in the melting
behavior of substances with apparently antithetical features,
such as atoms, traditionally assumed to be ‘hard’ objects,
and soft matter, surprising as it may appear, is related to the
softening effect that extremely high pressures may exert on
interparticle repulsive interactions.

One classical potential that is widely used to calculate the
equation of state of materials under extreme conditions is the
exp-6 potential [113]:

u(r) =

⎧⎪⎨
⎪⎩

+∞, r < σM

ε

α − 6

[
6 e−α(r/σ−1) − α

(σ

r

)6
]

, r � σM

(9)
where r is the interparticle distance, ε is the depth of the
attractive well, σ is the position of the well minimum, α

(usually taken in the range 10–15 [114]) controls the steepness

Figure 12. The exp-6 pair potential u(r) (solid line, left vertical axis)
and the corresponding force (dashed line, right vertical axis). With
increasing α, σM decreases while εM = f (σM) increases (for
variation between 11 and 13, σM and εM vary in the range
0.374σ–0.245σ and 370ε–7104ε, respectively).

of the exponential repulsion and σM is the point where the
function in the second line of (9) attains its maximum value
εM. The relative softness of the repulsion described by the
exp-6 potential has long been known, but only recently has
its soft nature been fully recognized [115]. In fact, the exp-
6 interaction exhibits a region of downward concavity in its
repulsive component; hence it is characterized by the existence
of a range of interparticle distances where the repulsive force
f (r) = −du (r)/dr decreases as two particles get closer to
each other (figure 12). This constitutes the origin of two
separate repulsive length scales: (i) a larger one corresponding
approximately to the local maximum of the repulsive force
and (ii) a smaller one associated with the hard core diverging
repulsion.

We calculate, using Monte Carlo numerical simulation,
the exp-6 phase diagram in the PT (pressure–temperature)
plane for α = 11 (figure 13). We perform calculations using
N PT Metropolis Monte Carlo in conjunction with Widom and
Frenkel–Ladd free-energy methods [116]. The number N of
particles in the samples considered is of the order of 1000
(performing checks with larger samples as a test for finite-size
corrections and finding them to be negligible). In what follows,
the pressure P and temperature T are expressed in units of
ε/σ 3 and ε/kB, respectively. The fluid–solid coexistence line
starts at low P with a positive dT/dP slope that gradually
decreases with increasing pressure until it vanishes at a point
of maximum melting temperature TM. This is followed by a
pressure interval in which the slope is negative. Eventually, at
extremely high pressures, the melting line recovers a positive
slope. When increasing pressure at a fixed temperature smaller
than TM, the system, initially fluid, becomes increasingly
dense until it crystallizes. Below a given temperature (≈10),
the system crystallizes first into a face-centered cubic (fcc)
structure and then, upon increasing pressure further, undergoes
a transition into a body-centered cubic (bcc) solid. This effect
is related to a decrease in the mean nearest-neighbor distance
when the pressure is increased, which causes particles to enter
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Figure 13. Phase diagram in the PT plane of the exp-6 interaction
model for α = 11. Pressure P and temperature T are expressed in
units of ε/σ 3 and ε/kB, respectively. Coexistence curves are
represented as solid lines. Open circles represent coexistence points
as estimated through exact free-energy calculations (errors are
smaller than the size of the symbols). The full circle is obtained
through an exact classical total-energy calculation. The boundary
between the fluid phase and the FCC crystal at extremely high
pressures corresponds to the lower stability threshold of the solid.
The locus of density maxima (∂ρ/∂T )P = 0 (temperature of
maximum density line) is represented as a dotted line. All lines in the
figure are guides for the eyes. Data are from [115]. In the
intermediate-pressure region (between the low density solid and the
extremely high density one) additional solid phases are presumably
present at low temperature as suggested from the calculation of the
chemical potential at zero temperature (see text).

inner, less steep regions of the interaction potential. As the
pressure is further increased, this solid undergoes re-entrant
melting into a denser fluid. This is a consequence of the
increasing competition between the two scales of the first-
neighbor distance. The larger length scale, associated with
the soft repulsion (effective at the lower pressures), loses
effectiveness, as pressure increases, in favor of the smaller
length scale related to the particle core diameter σM (dominant
at the higher pressures). Eventually, at very high pressures, the
fluid crystallizes into a hard-sphere-like fcc solid.

The above interpretation is corroborated by an analysis of
the structural properties of the exp-6 system. We compute
the radial distribution function g(r) and the structure factor
S(k) at a temperature T close to TM for several pressures,
in the pressure range where re-entrant melting occurs. Upon
compression, the first peak of g(r) (at r = σM) moves
upward while the second and third peaks go down, signaling
that an increasing number of particles are overcoming the
soft repulsive shoulder (figure 14). This behavior is mirrored
in the pressure dependence of S(k), whose main peak first
builds up, signaling ordering (in the pressure range where, at
lower temperatures, the fluid crystallizes into a low density
solid), and then goes down as the system becomes increasingly

Figure 14. Pair distribution function g(r) of the exp-6 interaction
model for α = 11. P = 1000 (dashed line), 5000 (double
dotted–dashed line), 10 000 (dotted line), 15 000 (dashed–dotted line)
and 20 000 (solid line).

Figure 15. Structure factor S(k) of the exp-6 interaction model for
α = 11. T = 17; P = 1000 (dashed line), 5000 (double
dotted–dashed line), 10 000 (dotted line), 15 000 (dashed–dotted line)
and 20 000 (solid line).

disordered (figure 15). The behavior of g(r) and S(k) is
consistent with disappearance of the soft repulsive length
scale as the pressure is increased (leaving the hard repulsive
length scale), and is completely different from the behavior
characterizing simple fluids, where all the peaks of g(r) and
S(k) increase as P increases at constant T .

In the large pressure range between low density and
extremely high density solids, we may expect the exp-6 system
to form different solid phases at low temperatures. The
possible solid structures can be anticipated by calculating at
zero temperature the chemical potential (i.e. enthalpy) for
a number of relevant crystal lattices. We examine a large
number of potentially relevant structures including, among the
possible candidates, all Bravais crystals as well as a number
of non-Bravais lattices (i.e. Bravais lattices with a basis) that
have shown themselves to be relevant for some soft material
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Figure 16. Reduced number density as a function of temperature for P = 8000, 10 000, 11 000 and 12 000 (full dots). All lines are
fourth-order polynomial fits of the data points.

or simple substance under high pressures. We find that the
sequence of stable crystals for increasing pressures is [117]

FCC
5500−−→ BCC

11 800−−−→ SH
17 100−−−→ hR1

20 400−−−→ oC8
33 300−−−→ βSn

47 600−−−→ oC8
60 900−−−→ A20

68 300−−−→ Sh
76 900−−−→ wurtzite

72 500−−−→ FCC, (10)

where the numbers above the arrows indicate the transition
pressures (to within an accuracy of 100). The symbols
sh and hR1 are simple hexagonal and simple rhombohedral
lattices, oC8 is the structure of αGa, the βSn lattice occurs
also for Si, Ge, Rb and Cs and A20 is an orthorhombic
lattice providing the structure of αU, βGa and γ Ti. Our
results show that non-Bravais lattices can represent the stable
structures also for simple spherically symmetric classical
interactions. The extremely rich polymorphism of the exp-6
system with respect to Lennard-Jones-like potentials follows
from the fact that in these last systems the fcc and bcc
crystals allow us to accommodate second and third neighbors
at convenient distances. On the other hand, in systems
interacting through softened core potentials, fcc and bcc local
orders are destabilized by the peculiar dependence of the
interatomic force with distance, which leads to the existence of
two incommensurate length scales that frustrate very compact
arrangements. The existence of two competing repulsive
length scales appears then to be an essential ingredient if

‘exotic’ structures are to represent in some range of pressure
the stable phase for isotropic interactions. Our results are
relevant not only for atomic systems at high pressures, but
indicate also that suitably tailored colloids may exist in such
solid phases under standard conditions.

The anomalous melting behavior of the exp-6 system
is associated with the water-like anomalous behavior of the
number density. If temperature is decreased and pressure is
kept constant, in the fluid region above the re-entrant portion
of the melting line the density first increases and then, contrary
to its usual behavior, decreases (figure 16). The region in
which the density exhibits anomalous behavior is delimited by
the temperature of the maximum density line that coincides
with the locus of points where the density attains its maximum
value (figure 13). The decrease of density follows from open
local structures being favored over compact local structures
as the temperature is decreased. This density anomaly has
been observed in a number of substances, among which
water is the most relevant [118, 119], as well as in model
systems characterized by a soft repulsion. Concerning model
systems, it is to be noted that the presence of a re-entrant
region in the melting line is not necessarily associated with
density anomaly. For example, the square shoulder and SSSW
potentials undergo re-entrant melting (see figures 2 and 4) with
no density anomaly.
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Figure 17. Phase diagram in the PT plane of the exp-6 interaction
model for α = 10. Pressure P and temperature T are expressed in
units of ε/σ 3 and ε/kB, respectively. Melting points (calculated
through the Lindemann criterion) are represented as full green dots.
A rough estimate of the boundary between the bcc and fcc solids
(black dotted line) is obtained by drawing a straight line from the full
square at T = 0 (following from an exact total-energy calculation) to
the point on the melting curve where the value of the Lindemann
ratio switches from 0.15–0.16 (fcc) to 0.18–0.19 (bcc) [128, 129].
We also plot the fluid–solid coexistence locus as obtained by the
heat-until-it-melts criterion (blue open dots), which agrees well with
the Lindemann-based estimate. The locus of density maxima in the
fluid phase is marked by red diamonds. All lines in the figure are
guides to the eyes. Data are from [130].

In order to analyze how the phase behavior of the exp-6
model changes with the steepness of the repulsion, we calculate
the phase diagram for α = 10 (see figure 17). We find that the
overall shape of the melting line is similar to that of α = 11,
but the anomalous features (i.e. the maximum in the melting
line and the following re-entrant melting region, as well as the
region of anomalous density behavior) occur at much lower
pressures and temperatures. By performing calculations for
other values of α in the range 10–13, we find that the maximum
melting temperature TM and the corresponding pressure PM

approximately scale as εM(α)/σM(α)3 and εM(α), respectively.
This is a sensitive dependence, since a unitary increase (in the
interval considered) implies approximately a tenfold increase
of PM and a fivefold increase of TM.

Analyzing the melting behavior of the exp-6 system may
help us understand the anomalous features that characterize
the melting of many materials under extreme conditions. It
is known that pressure can trigger a reorganization of atomic
structure. This can lead to a number of phenomena such
as charge transfer to more localized orbitals (e.g. the 6s–5d
transition in Cs [120]), orbital hybridization (e.g. the 5p–
5d one in Xe [121]) or, more generally, a collective response
of conducting electrons creating, upon compression, a more
compact crystal lattice. The transition of an element to a
more compact solid is usually reflected in a sudden increase
in the dT/dP melting slope, which is usually preceded by a
portion of the melting line exhibiting a negative, vanishing, or
very small, positive slope. Although the specific mechanism

Table 1. Summary of anomalous properties for five soft core
potentials we have studied in three dimensions. These anomalies
include rich polymorphism of crystal phases (PCP), re-entrant
melting, (RM) anomalous increase of compressibility upon cooling
(AIK) resulting in κT maximum (KTM), anomalous increase of CP

upon cooling (AIC) sometimes resulting in CP maximum (CPM),
anomalous thermal expansion (ATE) upon cooling, anomalous
increase of diffusivity upon pressurizing (AID), liquid–liquid phase
transition (LLPT) and polyamorphism of glassy states (PAGS). The
latter may be observed in the form of a sharp (S), first-order-like
transition, or gradual (G) hysteretic changes of the structure upon
pressurizing.

Potential PCP RM AIK AIC ATE AID LLPT PAGS

Shoulder Yes Yes KTM Yes No No No G
SSSW Yes Yes KTM CPM No No Yes S
Ramp Yes Yes KTM Yes Yes Yes No G
Jagla Yes Yes KTM CPM Yes Yes Yes S
Exp-6 Yes Yes KTM Yes Yes Yes No G

at work may differ substantially, such behaviors can be
interpreted, in the effective-potential approach, to be effects of
the weakening of repulsive forces associated with the crossover
from a larger to a smaller repulsive length scale. We may
expect this to be a general phenomenon that induces any
substance to settle into a more compact and rigid arrangement
if the pressure is high enough. A regularly increasing and
concave melting line typical of, e.g., hard sphere and inverse-
power potentials, although assumed for a long time to be
standard behavior, is actually unrealistic at extreme pressures.
Anomalous melting can be expected to be the norm among the
elements. However, the pressures and temperatures at which
structural softening occurs can vary considerably from one
substance to another, as suggested by how the location of exp-
6 anomalies are extremely dependent on the steepness of the
repulsion. In principle, larger and heavier atoms should be
more susceptible, at least within the same chemical family, to
pressure-induced modifications in condensed phases. This is
consistent, for example, with the known properties of alkali
metals [88, 120, 122–126] and with the behavior of rare gases,
in which the flattening observed in the melting line at high
pressures is more marked and occurs at a lower pressure in the
heavier gases [121, 127].

4. Summary

We show that soft core potentials can reproduce many
anomalous properties of substances at low temperatures. These
results are summarized in table 1. While all these phenomena
are not necessarily associated with one another, they all come
from the same origin, namely the ability of the soft core models
when pressurized to collapse and restructure.

As we have seen from various studies, most of the soft
core potentials exhibit crystal polymorphism but not all of
them exhibit liquid anomalies and LLPT. The presence of an
attractive part in the potential seems to be a necessary condition
for the existence of an LLPT and sharp polyamorphism in
the glassy states. In cases without a LLPT, pressurizing of
glassy states results in a gradual transition from one state
to another. The potentials with a narrow region of strong
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repulsive forces, such as those with a square shoulder and
SSSW, do not exhibit density and diffusivity anomalies, but
still show a compressibility maxima line that seems to be the
most ubiquitous of the thermodynamic anomalies present in
the models we studied. To observe density and diffusivity
anomalies, a wider, ramp-like region of repulsive forces is
needed. The heat capacity increases upon cooling in all of
these models, but only in models with a clear LPPT does it
develop a maximum in the equilibrium liquid state associated
with the Widom line as well as the non-ergodic maximum
at the glass transition. From the examples studied here,
it is clear that re-entrant melting is not always associated
with a density anomaly. Our preliminary studies show that
density anomalies may exist even in the absence of re-entrant
melting. We also clearly see that a density anomaly and an
LLPT can exist independently of each another. In all cases
studied, the LLCP lies outside the density anomaly region,
resulting in a positive slope of the LLPT line. As the slope
of the LLPT line approaches zero, the critical point disappears
below the line of homogeneous nucleation [42] and becomes
undetectable in computer simulations. We also demonstrate
that the density minimum and the compressibility maximum
are not necessarily related to the Widom line emanating from
an LLCP. The density minimum and heat capacity maximum
occur near the glass transition and may not indicate the Widom
line. To conclude, an observation of one anomalous feature in
an experiment leaves open a wide variety of possible scenarios
regarding the observation of other anomalies in the behavior of
the substance under investigation.
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